

MODERNIZATION SOLAR

Energy storage lead-acid battery decay

Overview

We proposed a methodology to predict the lifetime of lead-acid battery under controlled aging conditions. At the heart of our idea is the characterization of batteries by impedance spectroscopy. Our data are based on the statistical analysis. We proposed a methodology to predict the lifetime of lead-acid battery under controlled aging conditions. At the heart of our idea is the characterization of batteries by impedance spectroscopy. Our data are based on the statistical analysis over few hundreds of Nyquist diagrams, for three independent cells. We monitor the parameters of the equivalent circuit of the battery in the states of charge 100% and 75%, respectively. Our data prove that the second part of the battery lifetime can be described accurately by a linear decay of the values of CPE for the battery at 75% SOC. Moreover, our results suggest that this decay rate can be associated to quality factor in manufacturing technology of the battery.

This paper presents a methodology to predict the evolution of state-of-health for lead-acid battery under controlled aging conditions. The results are based on the electrochemical impedance spectroscopy data. We show that by collecting impedance data for the battery for two states of charge (fully charged and at 75% SOC, respectively) it is possible to predict the lifetime of the battery with high accuracy. Our conclusion is based on the effect of linear decay for the values of constant phase element in the equivalent circuit of the battery during the aging. In order to validate our conclusions we perform analysis over three separate cells. We show that the linear decay as a function of cycle index is a robust feature, present for all samples. Potential application of our methodology include the rapid evaluation.

Lead-acid EIS spectroscopy Controlled aging Predicting battery lifetime.

Lead-acid batteries have been widely used as secondary sources of energy for many years. Their extensive usage is due to several characteristics such as high specific energy, high-rate discharge capability, low cost manufacturing and recycling as well as high energy density. In spite of their long history the technical characteristics of lead-acid batteries are continuously improved [1,2]. For example, optimization of the electrodes design [[3], [4], [5], [6]] is directed toward optimal distribution of the current in the electrodes [7]. The search for new materials is including fabrication of improved lead alloys, additive to active mass or electrolyte [8,9]. In parallel to the development of new materials and design elements, the characterization techniques play an esse.

2.1. Materials and experimental setupIn our experiments we use two types of electrodes: industrial and laboratory fabricated electrodes. The industrial plates as well as the components for laboratory fabricated electrodes were provided by ROMBAT [25]. By starting from these products we assembled three cells, using as electrolyte a solution of 1.25 g/cm³ H₂SO₄ for the electrode formation. The formation takes 36 h, the process being similar to that used in industry. After formation we check the electrolyte concentration in order to maintain it at

1.28 g/cm³. Cells of 2.14 V were assembled in each case. In the Fig. 1 we show the first set of electrodes before the formation process.2.2. Principle of method

Are lead-acid batteries aging and RUL estimation relevant for energy storage systems?

While the specifics of battery capacity requirements and usage patterns may vary depending on the application, the findings from the previous section on battery aging and RUL estimation are likely to be relevant for a wide range of energy storage systems, including those based on lead-acid batteries.

Are lead-acid batteries a reliable energy storage solution?

Low-cost and reliable energy storage is paramount if renewable energy systems are to be increasingly integrated into the power grid. Lead-acid batteries are widely used as energy storage for stationary renewable energy systems and agriculture due to their low cost, especially compared to lithium-ion batteries (LIB).

Do lead-acid batteries affect the environment?

Received 3rd March 2025 , Accepted 15th May 2025 Although lead-acid batteries (LABs) often act as a reference system to environmentally assess existing and emerging storage technologies, no study on the environmental impact of LABs based on primary data from Europe or North America since 2010 could be found.

What is lead acid battery?

It has been the most successful commercialized aqueous electrochemical energy storage system ever since. In addition, this type of battery has witnessed the emergence and development of modern electricity-powered society. Nevertheless, lead acid batteries have technologically evolved since their invention.

Energy storage lead-acid battery decay

Research on energy storage technology of lead-acid battery ...

Dec 18, 2022 · Research on lead-acid battery activation technology based on "reduction and resource utilization" has made the reuse of decommissioned lead-acid batteries in various ...

Time-dependent analysis of the state-of-health for lead-acid batteries

Feb 1, 2019 · Lead-acid batteries have been widely used as secondary sources of energy for many years. Their extensive usage is due to several characteristics such as high specific ...

Estimation of Lead Acid Battery Degradation--A Model for ...

Sep 5, 2025 · However, lead-acid battery technology suffers from system degradation and a relatively short lifetime, largely due to its charging/discharging cycles. In the present

Novel, in situ, electrochemical methodology for determining lead-acid

Feb 1, 2024 · Understanding the thermodynamic and kinetic aspects of lead-acid battery structural and electrochemical changes during cycling through in-situ techniques is of the utmost ...

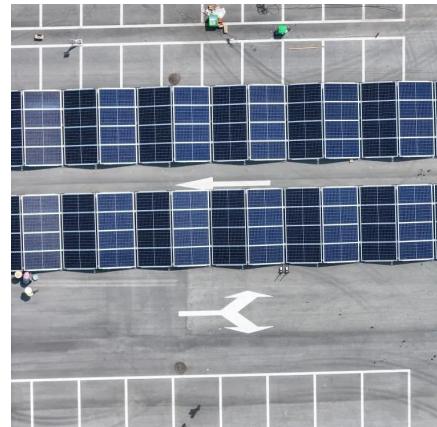
study, we ...

[Thermodynamics of Lead-Acid Battery Degradation](#)

Dec 19, 2019 · This article details a lead-acid battery degradation model based on irreversible thermodynamics, which is then verified experimentally using commonly measured operational ...

[Technology Strategy Assessment](#)

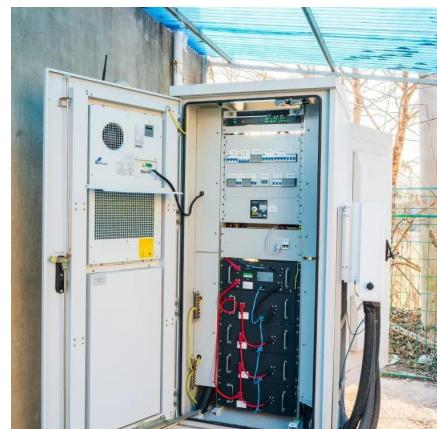
Jul 19, 2023 · About Storage Innovations 2030 This technology strategy assessment on lead acid batteries, released as part of the Long-Duration Storage Shot, contains the findings from the ...


[Past, present, and future of lead-acid batteries](#)

Aug 1, 2021 · of energy storage technologies. j Despite perceived competition between lead-acid and LIB technologies based on energy density metrics that favor LIB in portable applications ...

Remaining Capacity Estimation of Lead-acid Batteries

Nov 18, 2023 · Remaining Capacity Estimation of Lead-acid Batteries Using Exponential Decay Equations



Lead-Carbon Batteries toward Future Energy Storage: From ...

Jul 27, 2022 · The lead acid battery has been a dominant device in large-scale energy storage systems since its invention in 1859. It has been the most successful commercialized aqueous ...

Full life cycle assessment of an industrial lead-acid battery ...

Jun 5, 2025 · Abstract Although lead-acid batteries (LABs) often act as a reference system to environmentally assess existing and emerging storage technologies, no study on the ...

Contact Us

For technical specifications, project proposals, or partnership inquiries, please visit:
<https://meble-decorator.pl>

Scan QR Code for More Information

<https://meble-decorator.pl>